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PREFACE

This document contains an eval,tation of the software engineering
techniques used for the develop,.nent of MOSS, Modular Operating System
for SUN/1C. MOSS is a general purpos n real time operating system which
was being developed for MSFC's Concept Verfication Test (CVT) program
under Contract No. NAS8-31222.

Each of the software engineering techniques is described and evalu-
ated based on the experience of the MOSS project. Recommendations for
the use of these techniques on future MSFC software projects are also given.
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1.	 INTRODUCTION

M&S Computing has been engaged in the design and irplementation of
MLSS, a general purpose, real time operating system for the SUMC computer,
over a period of several years. The major objective of the project has been
to produce a reliable, modifiable, and understandable operating system. To
meet these objectives, th_ performance of this work has been committed to
the utilization of state-of-the-art software engineering techniques.

In recent years, considerable effort has been devoted to the develop-
ment of large and complex operating systems. These system, provide ser-
vices such as on-line file structures, interactive zapabilities, and sophisticated
resource management facilities that were not available on earlier systems.
Aerospace computers, as well as commercial co,nputers, are undergoing these
changes to more sophisticated and complex capabilities clue to advances in
circuit and packaging technology. Their operating systems also are showing
increased complexity with the addition of services and capabilities formerly
reserved for commercial systems.

Unfortunately, this complexity has brought with it a number of serious
problems. The cost of 1,uilding such systems is significant. Development
time is long and unpredictable, system modification is difficult, znd the soft-
ware is never completely debugged. These problems are a result of the fact
that the systems are intellactually unmangeable; i. e. , they are so complex
that it is impossible for an individual to understand the operation of all of the
components of the system and how they interact.

To overcome these difficulties, new software engineering techniques
have been proposed in workshops and technical papers. These techniques
have been applied widely for both general purpose and real time systems with
general success. The use of these advanced techniques for the implementation
of a large, general purpose, real time operating system has, hr • vever, not been
attempted before the MOSS project. This project presents a 	 ortunity to
perform a detailed evaluation of these software engineering tL L-. ,iiques as applied
to the MOSS implementation. Such an evaluation would provide valuable experi-
ence for future MSFC software production endeavors. The proper use of soft-
ware engineering techniques can make a significant contribution toward the goal
of low cost, reliable software for space systems.

This document contains the results of the evaluation and assessment
of the software engineering techniques used in the design and implementation of
MOSS. Section 2 contains a review and assessment of the software development
techniques utilized on MOSS. Section 3 contains a discussion of the utilization of
a High Order Language (HOL) for operating system implementation. In partic-
ular, the use of SUE for MOSS implementation is reviewed. Section 4 deals



with the assessment of a virtual memory environment in a real time operating
system. Then, Section 5 discusses the concurrent development of hardware
and software.

The remainder of this section summarizes the conclusions and rec-
ommendations of the evaluation.

	

1.1	 Chief Programmer Team Summary

Conventional chief programmer team principles were found to be an
unresponsive organization for developing large, complex operating systems.
An adapted chief programmer team, giving more responsibility to senior team
members, was found to be a better organization.

The major problem was, however, the overall size and complexity of
operating systems. This problem can be dealt with by using staged imple-
mentation developing the system in smaller, manageable parts (called
stages).

	

1.2	 Top-Down Development Summary

Top-down development principles were found to focus too exclusively
on the functional structure of the system, ignoring the data structure and flow.
Operating systems are especially dependent on the data structure and flow.

A technique, such as composite design, which emphasizes the data
aspects of development was recommended for future operating system projects.
Concurrent attention should be given to both the functional structure and data
structure of the system.

	

1.3	 Structured Programming

Structured programming was found to aid the general clarity of the code
produced in the MOSS project. It was found, however, that structured pro-
gramming does not lend itself to handling exception cases.

	

1.4	 HOL Utilization Summary

High Order Language use for operating system development was generally
found to be useful. Specific problems with the SUE System Language were noted.
It was recommended that selection criteria for an HOL include adequate docu-
mentation and a proven compiler in addition to language capabilities suited to
operating systems development.

f
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1. 5	 Virtual Memory Summary

Virtual memory was found tc be a positive factor contributing to a
better design of MOSS. It was, how:: ver, found to be a negative factor in
the development of user applications requiring in-depth knowloclge of virtual
memory policies and concepts.

	

1.6	 Concurrent Hardware/Software Development Summary

Concurrent hardware/software development was found to be very
beneficial in providing evaluation and feedback to both disciplines. It was
recommendcd that formal review procedures be established to resolve con-
flicts in designs. It was further recommended that software design pre<:ede
hardware design somewhat so that potential conflicts may be resolved before
the hardware is fixed.

-3-
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2.	 SOFTWARE DEVELOPMENT TECHNIQUES

Three design and implementation principles were used in the MOSS
project. They are:

o	 Chief Programmer T ams,

o	 Top-Down Development,

o	 Structured Programming.

In this section each of these techniques is evaluated. First, the basic principles
of each technique are discussed, followed by the adaptations made for the MOSS
project. Each technique is then evaluated in terms of its effectiveness and
productivity and recommendations for use in future development efforts.

	

2.1	 Chief Programmer Team

Chief Programmer Team is a management discipline applied to the
organization of per. onnel for software development. The methodology is
directed toward reducing software costs and improving software quality by
changing from the traditional loosely structured team of programmers to a
more structured team of programming specialists who WLrk under defined
operational disciplines.

2. 1. 1 Chief Programmer Team Principles

The Chief Programmer Team is characterized by defining the positions
and responsibilities of each member of the team. The team is typically com-
posed of the following positions:

o	 Chief Programmer - The chief programmer is a senior
level programmer and analyst who is responsible for the
development of the programming system in all respects.
This person carries a technical responsibility for the
project, including higher echelon coordination. He pro-
duces the critical core of the programming system in
detailed code himself, directly specifies all other code
required for system implementation, and reviews and
oversees integration of that code.

o	 Backup Programmer - The backup programmer is a
senior level programmer and analyst who functions in
full support of the chief programmer at a detailed task

PRE,IDING PAGE BLOE NOT FILE -5-



level so that lie is constantly in position to assume the
chief programrner's responsibility temporarily or
permanently. [le miry lie called upon to explore alter-
native design approaclius, independent test planning, or
other special tasks but serves normally as an active
participant in techni c . 1 design, internal supervision,
and external management functions.

o	 Librarian - The librarian is a programmer technican
or secretary, lie will assemble, compile, linkage-
edit, and test-run programs as requested by project
programmers. The librarian has d0-ect responsibility
for task of maintaining the development support library.

o	 Team Members - The team is a flexible module that can
be supplemented with additional programmers, analysts,
or technicians commensurate with the workscope. As
the design and development workscope evolve, either
additional programmers can be added to a given team
to write the programs specifi-d by the chief programmer,
or components of the ovoral) design can flow to other teams
for more detailed design and coding.

2. 1.2 MOSS Chiei Programmer Team

As previously stated, software development techniques such as the
Chief Programmer Team provide a moffiodol.ogy for development of software.
Each application will require modifications so that the techniques are adapted
to the environment of the specific task.

The design phase of MOSS utilized multiple chief programmer teams.
Each team assumed design responsibility for several major areas of the sys-
tem. The design progressed fairly well within the team principles given above.
The major problurn encountered was a lack of communication and design Lnte-
gration across the various teams. The lack of interteam effort hindered the
overall design progress. I's  the design of l:he individual parts of the system
were nearing completion, mass meetings of all teams were required to work
out the interfacing problems of the separately designed areas. 'fliese rncetil.gs
were very unproductive use of the project personnel and produced only workable,
not conceptually clean, design compromises to tie the overall design together.

The implementation phase of tlhe proiect employed an adapted Chief
Programmer Team concept as illustrated by Figure 2-1. The adaptations were
aimed at eliminating the lack of interteam communication experienced during
the design phase. Th . chief programmer retained most of the responsibilities

-6-
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identifies! for that position. llowevur, the chief programnicr did not
produce thn critical co'. of the system. As discussed in a following
section, MUSS was drvuluprd using un t p VhitCLLUro basurl on hierarchical
levels of oystem functions. Ilucause of this architecture, the definition
and iduntification of critical code was difficult. Each level of Lhe system
contained critical code to the overall system functions. Individual Luam
members were given responsibility for a level of the systutxL and produced
the code. for that level.

The chief programmer had the specific responsibility fur defining and
coordinating the interfaces between levels. The overall integrity of the de-
sign with respect to the requirements and specifica.ions remained a direct
responsibility of the chief programmer. He was also responsible for the
identification and coding of the common system data structures.

Duu to the size and overall complexity of MOSS, all of the team
members were senior level programmers. Each team member acted as a
backup programmer, assuming primary responsibility for the technical cor-
rectness of several major levels of the system. This organization required
each team member to maintain a functional knowledge of the overall system
and a detailr:d knowledge of how his level fit into the total design.

Each team member was io a position to be utiliied to explore alterna-
tive design approaches, independent test planning, or other special tasks.
'rho assigninent of these Lypc ta:;ks was genucally ]toyed to the area of re-
sponsibility of the Loam member. For example, the Loam rnember responsible
for the Process Management function would be used to perform a special
assignrrcent related to process switching hardwara.

A significant refinerntmt to the chief prograrmer team was instituted
during the itnplementaLion phase. The position of test engineer was added to
the team. The test engineer was responsible for generating all support soft-
v., are for testing and evaluation during top-clown program development. The
test engineer must have knowledge of both the system requirements and the
design meeting those requiremcnts. This position was established because
of the need for an integrated approach to the system testing activities. Many
of the testing activities for the individu -tl levels of the systorn. required simula-
tions (test stubs) of other levels. Tlie test engineer was responsible for this
coordination. 112 provided the overall continuity to the system checkout the
same as the chief programmer provides continuity to system design and
irriplementaLion.

-8-



2. 1.3 Chief Programmer Teai
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The use of the chief programmer team on the MOSS project met with
many prublems and did not, in general, provide a responsive organization
for dealing with the recurring problems of developing a large, complex
operating system. The problem of lack of interteam communication pre: b­ usly
noted in the design phase were partially resolved by the adapted approach
established for the implementation phase. Ever though the design of MOSS
was intended to divide the system into discrete, manageable parts, the inter-
action among the parts remained complex. This caused problems for the
team members dealing with the detailed knowledge of their level of the sys-
tem as well as the details of other levels necessary to understand the complex
interactions.

The test engineering position has proved to be a valuable refinement to
the chief programmer team concepts. The separation of the testing respo.
sibility has encouraged the thorough checkout of programs and reduced temp-
tation to shortchange program and system checkout for the sake of coding
progress.

In general, the lack of success with the chief programmer team on the
MOSS prr- • : can be attributed more to the size and complexity of MOSS that,
the chic ,ivgramrner team organization. In fact, the adapted team principles,
with the chief programmer responsible for the interaction of the parts of the
system, have been responsible for maintaining control of the MOSS project.

Team organizations with well-defined position and responsibilities
seem to provide a degree of control and responsiveness to implementation of
large systems. Size and complexity, however, remain the determining cri-
teriaforthe successful implementation of any prograntming system. The MOSS
project was one of such size and complexity that successful completion on
schedule would have been risky to predict.

Future NASA endeavors of this type should be based on a staged imple-
mentation. The system should be designed to be implemented in stages, each
stage representing a complete system of manageable size and complexity.
The overall system design should be completed at a high level of detail. Then,
the detailed design and implementation for the first stage should be completed.
The experience with the design gained from this implementation can then be
fed back into the overall design to produce the necessary adjustments to and/
or redesign of the system. Successive stages build on the earlier stages and
implement further capabilities (see Figure 2-2). Each stage, thus implemented,
is a working useful system. This approach not only controls size and complexity
in small increments, but also aids management control of and visibility into the
scheduled progress of the system development.



STAGCD INMPI..! ME.NTA'PION

SYSTEM	 IMPLEMCNTATION
DESIGi'.

Figure 2-2
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2.2	 Top-Down Development

Top-down development is patterned after the approach to system design
that requires programming to proceed from developing the control architecture
(interface) statements and initial data definitions downward to developing and
integrating the functional units.

Top-down development on the MOSS project encompassed hierarchical
modularity techniques in addition to strict top-down development techniques.
The principles for both of these techniques are described in this section.

2.2. 1 Top-Down Development Principles

Top-down program desigi, and implementation are an application of
deductive analysis to programm'ng. As a principle of programming, it re-
quires that each procedure or module be capable of complete explication at
some level of abstraction as a single block of code.

Each such block has a single entry at the top and a single exit at the
bottom, and all external references must be to other such blocks at a lower
level of abstraction (i. e. , which can be represented within the main block by
a functional description of the operation or operations performed). Such other
blocks are only exceptionally terminal; i.e., return is always made to the
main block upon normal completion unless the block involved is an exception
handling routine.

A m.ajor stylistic characteristic which this principle is meant to enforce
is that each block of code represents a complete funeticu ;whether in-line or
out-of-line) at some level of abstraction and can be read literally from top to
bottom typographically, without external references, unless detail at a lower
level of abstraction is desired. it is important to recognize that the freedom
to define levy 's of abstraction, to use lower level structures as elements, o°
higher level structures, and to reference such lower level structures out-of-
line can be used to defeat the intent of good structure and top-down design and
implementation. Hence, it is absolutely essential that each block represent
the acc-)mplishment of a relatively simply defined function (at the next higher
level of abstraction) and not an arbitrary collection of functions which cannot
support a common abstract functional description. Further, every block must
be used only as an element in a simple structure.

Ton-down development requires that programming proceed from de-
veloping the control architectures (interface) statements and initial data
definitions downward to developing ar.d integrating the functional units. Top-
down development permits programming to proceed naturally in parallel with
the continual integration of system parts as they are programmed. With

-11-
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top-clown dr.velopmer.t, the highest level blocks of a system or subsystem
are coded and tested first. Testing and integration starts with the highest
level system blocks as soon as they are coded, Since these blocks will
normal!)- invoke or include lower level blocks, some code must exist for
the next lower level blacks. This code, called a program stub, may irn-
mediately return control, may output a message fur debugging purposes
each time it is executed, or may provide a minimal subset of the functions
required. These stubs are later expanded into fully functional blocks of
code, which in turn, will require lower level blocks. Integration is, there-
fore, a continuous activity throughout the development process. Dining
testing, the system executes the blocks that have been completed and uses
stubs where they have not been completed. The developing system ii.self
can support testing because the code that will interface with the newly added
blocks has been previously integrated and tested and can be used to feed test
data to tl• e new segments. In fact, no major changes need be made to the
tast data as the system evolves, since it is always a "complete" system
(from the point of view of the input that is being tested).

This approach also provides z basis for capturing performance_ data
during the development cycle. By replacin,v each stub with a timing loop
that utilizes the estimated run time for that fur-lion, the developing system
becomes a model. As dummy routines are rcplac •d with working code, the
performance results can be appraised against the performance o'ojectivcs.
In a similar manner, storage allocation can be modeled.

Thus, it is possible to exercise and check the processing paths and
system architecture at the higher level before initiating implementation of
the lower levels. The important point is that program units at each .evel
are fully integrated and tested as a composite system before cocling of the
next lower level is required. Thus, completion of coding occurs in phase
with completion of the initial phase of integration.

Top-down development: provides the ability to evolve the product in a
manner Lhat maintains the characteristic of always being operable, extremely
modular, and always available for the successive levels of testing that ac-
compF.ny the corresponding levels of implementation. The quality of a sys-
tem produced by using the top -down approach is increased through earlier
detection and elimivatian of major design problems and coding errors. Top-
clown cevelopment also eliminates the need for writing drivers for unit testing
and generates a sysLcm whose most complex blocks arc also the most tested
blocks.

2. 2.2 Hierarchical Modularity Principles

A module is defined to be a block of cocle which may be independently
compiled and which may, at least potentially, he independently loaded.

-12-



However, each module is constructed to implement one or more of a set of
closely related functions at some analytica l 'evel. Two complementary
principles of modularization (within a function and across all the functions
in the system) were employed.

By application of the first principle, every module represents a
block of code. The converse need not be true, since a block of code detailing
an in-line structure will not be a module. At the lowest level, therefore, such
a module is a sequence of simple structures or in-line nests of structures of
statements. At the highest level, such a module would be a sequence of
simple structures whose elements consist of in-line nests of structures, calls
to lower level modules (i.e., out-of-line sequences of simple or nested struc-
tures), and statements in the programming language.

The highest level module describes the steps of a major function, the
lowest level module (which does not contain calls to other modules) describes
the steps of an atomic function, and the intermediate level modules describes
the steps of functions of intermediate levels of complexity. That is, the inter-
mediate functions are compounded of atomic functions, lower level intermediate
functions, and statements in the programming language organized according to
the rules of good structure. Figure 2-3 shows the breakdown of a function into

-	 intermediate and ator-Ac level modules.

By application of the second principle of modularization, the entire set
of hardware and software capabilities is segregated into a hierarchy of layers
of capabilities, where the lowest layer in the hierarchy provides only the most
elementary capabilities and each suceeding layer adds increasingly abstract
and more general capabilities (e.g., memory management, I/O management,
event management, etc. ). Each layer of this hierarchy defines a virtual
machine, and communication among different layers is closely restricted to
permit the verification of each layer as an independent entity. This stratifica-
tion of the complete system into a series of increasingly abstract machines
permits verification of the whole as a collection of relatively simple (albeit
increasingly abstract) machines rather than as a single entity of uncontrolled
complexity. Each layer consists of a group of related components and conforms
to the following rules:

o	 Each layer owns certain resources to which other layers
are not permitted direct access.

o	 No layer requirca any services of layers above it in
the hierarchy.

-13-
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The components within a layer are classified as either external or
internal. External components are capable of being invoked from higher
levels to perform a requested service or to supply information obtained from
its resources (resources owned by the layer in which the external component
resides). Internal components perform functions required by the other
components of the layer but are not capable of being invoked directly from
any other layer.

The first step in the program design process is to select the layers.
Each layer is selected to support or accomplish one or more of the following:

o It maps virtual system capabilities o; resources into less
abstract virtual system capabilities or resources, or into
physical system capabilities or resources.

o	 It maps logical data structures into less abstract logical
data structures or into pl^/sical data structures.

o	 It simplifies the system by restricting t Le access of the
system and the components of a layer to resources.

o	 It provides services and/or manages resources for upper
layer a.

As each layer is defined, the functions performed by it and the resources it
owns are specified. The interface, among the layers and components are
also established.

The next step in the design process consists of the evaluation and re-
finement of the layer structure and interfaces. Each layer is examined with
respect to its relationship with the rest of the system. In particular, it is
verified that the layers obey the presiously stated layering rules and perform
all of the functions required by the layers above them in the hierarchy. It is
also verified that the overall design meets the system requirements. The
verification process may point out inadequacies which are corrected by
modifying existing layers or by establishing additional layers. When a satis-
factory layer structure has been achieved, the process diagrams are completed.

As subsequent levels of detailed are specified, the internal components
of the layers are defined. The following criteria are used:

o	 A data structure or control block (e.g., the file directory
is contained within a single component in the sense that the
content and format of the data structure or control
block are made available to that component only. That

t
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component, therefore, controls all access and
modification to information contained within the
data structure or control block.

o	 The sequence of operations requirau to perform
• given .vell-defined function is contained within
• single component.

o	 I•Iardware dependent information is contained
within a single component.

2.::. 3 MOSS Top - Down Development

'lice development of MOSS took place in two relatively independent
phases. The first phase was the design of the overall architecture of the
system. During this phase, the basic parts ( levels) of the system were
defined and the interaction between them was established. The second
phase of development covered the design and implementation of each level.

Tone MOSS architecture was based on hierarchical layers of partitions
corresponding to levels of abstraction. A layer defines a level in the hier-
archical structure of the system and contains one or more partitions whose
interaction is limited and well understood. A partition is a group of functions
which are related in their effects and share cotriunon resources (data structures
and/or hardware features).

Within each partition there are internal and external functions. Ex-
ternal functions may be invokQd directly by functions of another partition. The
external functions of a partition provides the primitive operations of the partition
to other partitions in the system. Internal functions are used only within a
partition and cannot be referenced from other partitions. The internal functions
arc derived from the decomposition of the partitions into modules which support
information hiding.

Each partition was developed in a top-down manner from design through
implementation. All phases of the development were expressed in the notation
of the implementation language - SUE. Narrative features were developed for
SUE to add the necessary descriptive information to the design. Each successive
iteration of the design replaced more and more descriptive information with
actual SUE code. The final iteration of the development produced the code for
that partition.

-16-
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2.2.4 Top-Down Development Evaluation

The use of top-down development lead to an understandable functional
breakdown of the system at the top levels. This overall architecture pro-
vided a framework which remained stable as the design was modified to re-
flect changing requirements. New personnel of the project were able to
understand the basic structure of MOSS and work within it. The top level
design also successfully minimized the timing considerations which plaque
many real time system projects.

The successive refinements of the top-level design, however, lead
to increasing complexity in the system. The significant problem was the
poor development of the system data flow. The focus of development was
too concerned with functional relationships of the system. The definition
of data used by a function and the data to be passed among the functions did
not fall out until late in the design/ implementation process. This problem
seems to be a shortcoming of top-down development techniques, rather than
misuse by the MOSS team.

Operating Systems are more dependent upon and sensitive to the data
organization and flow through the system than other types of programs. This
is due to the many asynchronous activities (each with its own particular data
flow) active in the system. Special attention should be given to the r!ata def-
inition and data flow in operating systems developments beyond that normally

encouraged by top-down development principles. Techniques such as compoka-
ite design which support the concurrent development of both the functional
and data structures of the system should be used. At each step of the process,
the two structures are compared and inconsistencies resolved.

2.3	 Structured Programming

Programs coded in a traditional fashion usually use many branching
instructions to handle the control logic of the program. Experience has now
shown, however, that programs can be coded in a structured manner which
greatly enhances code readability and maintainability. Structured programming
is based on the principle that any program can be expressed in terms of basic
logic structures, as discussed below.

2.3.1 Structure Programming Principles

Good program structure is defined to be one which can be shown to be
a structure, albeit of finitely many compounded simple structures. A simple
structure is defined to have one of the following forms:
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The sequenti 1 program structure is an ordered set of operations
which are to be performed in order by some machine. It should be noted
that the operands may themselves represent structures of less complex
operands and hence the machine which shall perform them may be some
arbitrarily abstract machine.

Conditional

The conditional prograrn structure has as its simplest form-. it a
THEN b ELSE c (where b is executed if a is true, and c is executed if a is
no;: true). This can be expanded to the more general form, "CASE i,
wl--: re only the element identified with case i and none of the elements
identified with other cases is executed if i is true.

Iteration

The iteration program structure. has as its simplest form: DO a
WHILE b. Upon entry to this program structure, h is tested and, if true,
a is executed and the program structure is reentered. If (or when) b is not
true, this program structure is exited. Ilence, a is executed for as many
times as b is found to be true prior to each potential execution of a. This
can be represented by the conditional: IF b THEN a' is the recursive
procedure:

BEGIN PROCEDURE a'

a

II b THEN a' ELSE exit

END PROCEDURE a'

A variation of the iteration program structure is the DO a UNTIL b where b
is tested at the end of each iteration and the structure is reentered only if
b is true. In this structure, a is performed at least once, regardless of the
value of b.

Each of these three simple structures is a proper program (defined
as a program with a single entry and a single exit). Large and arbitrarily
complex programs may be. developed by appropriately nesting these structures
as elements within themselves. The logic flow of such a prograrn always
proceeds frorn a single entry to a single exit without arbitrary branching
however complex such a structure becomes.
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An arbitrary branch is defined to bL any branch which connects physi-
cally separated portions of a simple structure, but never to be a branch to
another simple structure at some lower level of abstraction from which a
return is eventually made.

These simple structures can be represented by corresponding flow
charts (see Figure 2-4).

2. 3. 2 MOSS Structured Programming

Structured programming on the MOSS project was inherent in the use
of the SUE language. SUE contained only structured control statements.
Section 4 covers the use of SUE for MOSS development.

2. 3.3 Structured Programming Evaluation

Structured programming was not used as a separate technique, but
was combined in the use of the SUE language. Thus, an evaluation of struc-
tured programming is hard to separate from the evaluation of the SUE
language. This section will cover comments relating to the control structures
provided by the SUE language.

One general concern of structured code is that the principles do not
generally lend themselves to handling the exception cases. Most examples
of structured code in the literature used a call to a system routine to service
an exception. For operating system development, however, there is no lower
controlling code to call for exception handling. During design and impl.ementa-
tion of these functions, the method usually turned into brute force coding. Re-
search needs to be done to either expand the language or to gain further insight
that would lead to acceptable solutions in this area.

2.4	 MOSS Top-Level Design

This section summarizes the top-level design of MOSS resulting from
the application of the software development technique described previously.

The MOSS Operating System uses an architecture based on hierarchical
levels of system functions overlayed dynamically by asynchronous cooperating
processes carrying out the system activities. A major architectural decision
was the separation of the static and dynamic structures of the system. The
static structures, consisting of a hierarchy of functions, defines the basic
framework of the subsystems and their interaction. Tl__ dynamic structure,
consisting of cooperating processes representing user applications and
asynchronous system activities, is superposed on the static framework.
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The architecture of MOSS has proven to be successful in achieving
the basic design goal of modifiability. The hierarchical realtionship of
the MOSS partitions has remained unchanged since the early phases of the
design while the dynamic structure and partition interfaces have been aug-
mented to satisfy additional user requirements.

The concepts of exclusive ownership of resources by partitions and
information hiding within modules has permitted the internal design of the
partitions to be modified without affecting the interfaces into the partition
or the design of other partitions.

The concepts of strictly controlling process communication has
permitted processes to be modified and added without affecting other MOSS
processes. For example, the data bus monitoring process has been added
since the original design.

2.4. 1 MOSS Layer Specifications

MOSS is organized into eleven hierarchical layers, each containing
one or more partitions. This section describes each layer starting with
the lowest hierarchical layer and proceeding to the highest (see Figure 2-5).

Layer 1

Layer 1 consists of the timer management, processor management,
process management, exception handler, and log queue management parti-
tions. These partitions provide basic system services which can be requested
by all system partitions.

o	 Timer Management Partition - This partition provides
timing ser .ces for the MOSS processes. The partition
controls the setting of an internal timer and the processing
of the external interrupt generated when this timer expires
(see Section 2.4.2).

o	 Processor Management Partition - This partition maintains
the status of the central processing unit ara allocates the
processor to the highest priority ready process. Time
slicing of the processor is not utilized.

C,	 Process Management Partition - This partition controls the
progress of processes in the MOSS environment. The parti-
tion creates processes, coordinates their activities, and
deletes them. Process coordination is accomplished via
the SINT and unconditional blocking/unblocking mechanisms.
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MOSS STRUCTURE OVERVIEW

HARDWARE
INTERRUPT
LEVEL LAYER PARTITIONS

User I1 1	 User tasks
2	 5 stem p tasks

1 5VC handler
10 2	 External control

3 Log management

1 Sampling performance
9 monitoring

8 1 Program management

1	 Logical I/O
SVC 7 2 Console management

6 1 I/O resource management

5 1 Access management

4 1	 Event management

Pa c Trap 3 1 Memor y management

1/0 2 1 Channel management

Timer 1 Timer management
1 2	 Processor management

Exceptions 3 Process management
4 Exception handler
5 Log queue management

e

figure 2-5
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The functions of the processor management and
process management partitions produce a multi-
programming environment.

o	 Exception Handler Partition - This partition analyzes
all detected errors in MOSS. Hardware/ firmware
detected errors are reported vi , the SUMC interrupt
structure while software detected errors are reported
via normal procedure invocation.

o	 Log Queue Management Partition - This partition
manages the in-core buffers of the system log. All
entries into the system log are made via this parti-
tion. The partition activates the log management
process whenever a log buffer becomes full in order
to have the full log buffer written to the system log
data set.

Layer 2

Layer 2 contains the channel management partition. This partition
centralizes the control of the SUMC channel hardware. It is responsible for
scheduling the channels, processing I/O interrupts, and maintaining the
channels' logical status.

The partition is placed at this hierarchical lev.a to enable the memory
management partition to request paging 1/0 operations.

Layer 3

Layer 3 contains the memor
'

management partition, This partition
supports the abstraction of virtual memory; i.e., the ability to reference an
address space which is relatively independent of physical memory and whose
is relatively independent of physici l memory and whose contents may actually
be in main memory or in a backing store called external paging memory
(EPM). This allows main memory to be shared among programs whose indi-
vidual or total memory requirements exceed the main memory size.

Under MOSS each task is assigned a linear address space of 224 bytes.
Each address space is divided into four segments; task private, job common,
system common, and MOSS private. There are not separate copies in memory
of the last three segments for each task. The hardware permits the sharing of
single copies of each job's common area, the system common area, and the
MOSS private area,
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Main memory is allocated on a job basis a-d varies between a user-
defined minimum and optimum amount depending on the requirements of
other jobs. Paging fn-, all tasks of a job is done in ti.e main memory al:o-
cated to the job. This scheme contributes to the repeatability of successive
executions of a job; an important real time performance consideration.

When a page is referenced which is not in main n-.omory, a page trap
interrupt is generated. This internal interrupt is processed by the memory
management partition which brings the required page into memory. However,
the layering of MOSS prevents this interrupt from being honored if it is in-
curred by modules at or below the mernory management nartition. Therefore,
such modules must always be locked in main memory.

Page swapping is performed on a page group basis, i. e. , one t:) four
pages of IK bytes each. The SUMC virtual memory hardware supports address
translation and page traps at the page group level,

Layer 4

Layer 4 contains the event management partition. This partition pro-
vides the services for communicating the occurrence of significant conditions
(called events) between ,p rocesses. The partition also provides the capability
to cuspend a process p nding the occurrence of a logical combination of events.

Events do not exist in the MOSS environment until a process defines a
condition to be an event. A l though the event management partition maintains
the stater of events, it relies on other partitions to detect the conditions which
constitute the event. That is, the reporting and processing of events has been
cent:'alized while event detection has been decentralized. This is consistent
with the principal of dedicated ownership of resources discussed in Section 3. 1.

Layer 5

Layer 5 contains the access management partition. This partition
provides th services for controlling the access rights to selected resources
in such a manner as to prevent deadlock situations between processes. A
requesting process whose specified access request cannot. be  satisfied is blocked
until the required resources become available.

Layer 6

Layer 6 contains the device management partition. This partition pro-
vides the services for allocating, scheduling, and maintaining the logical status
of the SUMC I/O devices (except for the paging device controlled by the memory
management partion).
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The partition translates I/O requests into channel programs and
queues the requests until the required device becomes available. The channel
management partition is subsequently invoked to schedule the associated
chanr.:l for execution of the channel program. The partition also performs
I/O error recovery if required.

An actual situation involving this partition provides an example of
the modifiabilility of MOSS: Because device characteristics and configurations
are maintained by this partition and hidden from the other MOSS partitions,
the other partitions could be designed and coded even though the device models
and configurations were still undefined.

Layer 7

Layer 7 contains the logical I/O and console management partitions.

o	 Logical I/O Partition - This partition provides the services
for supporting I/O requests which are specified in terms of
logical units rather than physical units. The partition per-
forms two types of transformationn; logical units '.re trans-
lated into one or more physical I/O functions. The device
management partition is invoked to perform any required
device I/O.

o	 Console Management Partition - This partition coordinates
the use of the system console among the MOSS processes.
The partition supports the abstraction of a virtual console
for each process. This enables a process to use its own
virtual console without the nec .ssity of coordinating input
or output with other users.

Layer 8

Layer 8 contains the program management partition. This partition
provides services for controlling the initiation, termination, and status of
jobs and tasks. A job is defined as a unit of work which consists of one or
more tasks. A task is the basic unit of work processed by MOSS and is the
smallest entity competing for system resources.

Layer 9

Layer contains the sample performance monitoring partition. This
partition provides services for collecting system performance data at periodic
time points.
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The collected data indicates the current utilization of the system re-
sources. This data is recorded and subsequently processed to provide a
statistical report which indicates system bottlenecks and poorly utilized
resources.

Layer 10

Layer 10 contains the SVC handler, external control, and :log manage-
ment partition.

o	 SVC Handler Partition - This partition provides th•e interface
between MOSS and tasks executing at the user level. All
executing tasks must invoke this partition whenever MOSS
services are required. The partition is invoked by an inter-
nal interrupt generated when a task executes a supervise.
call (SVC) instruction.

o	 External Control Partition - This partition provides services
which permit the control of MOSS operation from an external
source (e. g. , the console typewriter). The partition contains
functions which allow the system operator to obtain and/or
modify the current status of the system.

o	 Log Management Partition - This partition maintains the
system log data set. Its primary purpose is to output the
system log buffers which are filled by the log queue manage-
ment partition.

Layer 11

Layer 11 contains the user task and system task partitions. These
partitions may not execute privileged instructions or access the MOSS private
segment of the address space.

o	 User Task Partition - This partition contain:, all user
programs.

o	 System Task Partition - This partition provides various system
support programs. System tasks are processed by MOSS in the
same manner as user tasks. System tasks include linkers,
loaders, reader/interpreters, and output writers.

2.4.2 MOSS Processes

The MOSS environment may be viewed as a set of cooperating prccesses
where each process is a unit of work to which the processor may be allocated.

C s;
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MOSS provides facilities for controlling the creation, execution, and deletion
of individual processes, and also provides services for controlling communi-
cation and synchronization between processes.

In this section, each major MOSS process is identified and its purpose
explained.

I/O Interrupt Handler Process

This process performs the initial interpretation of the data furnished
with I/O interrupts. The process remains inactive until a hardware I/O
inLerrupt signal is accepted by the processor.

If the I/O interrupt indicates that an active I/O request has completed,
the interrupt data is passed to the process which requested the I/O and that
process is reactivated. Such processes normally return to higher layer
components which perform device-dependent analysis of the data. If the I/O
interrupt is not associated with an active I/O request, the process activates the
device attention process. In addition, if the I/O interrupt indicates that a
channel or device has become available, the I/O interrupt handler process
attempts to restart the channel with a request queued for that channel.

Tinter Interval Expired Process

This process performs the functions associated with the expiration of
a predefined time interval. These functions include the activation of any
processes which have requested their own suspension until the expiration of
the time interval and the resetting of the timer for the next time interval.
This process is activated by the hardware interrupt generated when the proces-
sor t s interval tinier expires.

Device Attention Process

This process performs detailed interpretation of the data provided by
I/O interrupts which are not associated with an active I/O request. This
process is activated by the .I/O interrupt handler process when an "unexpected"
I/O interrupt is received.

Data Bus Monitoring Process

This process examines the status of selected real time data sensors
(e. g. , analog inputs) at periodic time points. The data obtained is used to
maintain a representation of the devices in main memory. These data values
may subsequently be used to satisfy requests to read the real time data. This
method expedites the processing of requests for real time data and reduces the
request load on the channels associated with the monitored devices.
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The process is activated by the tinier interval expired process at the
beginning of each monitoring interval.

Job Process

MOSS creates a job process for each job. The job process performs
the functions required for initiating and terminating a job.

Each job consists of one or more tasks. The job process creates
and activates the task process for the initial task of a job. In addition, the
job process is activated whenever a task of the job terminates. This permits
the job process to control sequential scheduling of tasks and to determir e
when the job has completed.

Task Process

A task process is created for every task which executes within the MOSS
environment. A task process is created when a request is received by MOSS to
execute a task and exists until the task is terminated.

The task process is crested and activated by the job process if the
task is the initial task of the job or if the user requests sequential scheduling
of the tasks of his job. Otherwise, task processes are created and activated in
response to a task scheduling request from another task of the same job.

Sampling Performance Monitoring Process

This process collects basic system performance data and enters it into
the system log. The process is activated by the timer interval expired process
at each sampling time point.

External Control Process

This process carries out the commands which are entered at the system
console. The process is activated by the device attention process when an
external control command is read from the system console device.

Log Management Process

This process outputs a system log buffer to the system log data set.
The process is activated by a log queue management function whenever a sys-
tem log buffer becomes full. This function is a process because the writing of
the log buffer is asynchronous to the other processes in the MOSS environment.
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3.	 HIGH ORDER LANGUAGE UTILIZATION

Implementation of operating systems, especially real time operating
systems, with an IIOL has been avoided in the past. The major objections
have concerned the excessive use of main memory and the lack of control
over time critical areas. The experiences of other software projects where
I-IOL was utilized have shown, however, greater productivity, maintainability,
and readability for the complete system.

MLS Computing felt that the problems of using an HOL for an operating
system were solvable and the apparent advantages outweighed the problems.
The inclusion of virtual memory hardware in the SUMC reduced the problem
of the size of the completed operating system. MOSS could be paged in a small
amount of main memory. Timing problems in real time systems can rarely be
isolated to inefficiencies in the code above. The design of the system also has
a significant impact on system performance. The approach used for MOSS was
to optimize the system design for maximum performance consistent with the
clarity of the system. These design consideratii,ns were intended to limit the
remaining timing problems to a small percentage of the code which could
be identified from actual performance data. For those sections of code where
timing was of critical nature, that code could be done in assembly language.
Thus, a language with an in-line assembly language feature was desirable.

Selection of the proper HOL for implementation of the MOSS programs
was restrained by several factors:

o	 The language had to provide constructs that are in agreement
with structured programming constructs.

o	 The language had to re; c':; in a S/360 and produce S/360
target codr_.

o The language had to be commercially available and functional.
(Time did not permit the development of an operating system
I-IOL. )

o	 A desirable feature would be in-line assembly language
capabilities.

o	 The language would serve as the design vehicle.

Several languageswere considered for MOSS, including PL/S, I-iAL/S,
and JOVLAL. The SUE languages was a language developed by Project SUE at
the University of Toronto as a HOL for operating systems.
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SUE was chosen because the language capabilities offered the greatest
possibilities for a structured programming environment. The SUE language
provided the basic structured programming constructs.

3. 1	 SUE Language Capabilities

The SUE language is designed to facilitate separate compilation of
hierarchically related programs. The structure, of the language is intended
to encourage the development of programs by conceptual refinement. Opera-
tions which are logically primitive at one level of abstraction are defined in
terms of more basic operations at the next. Some levels of refinement are
achieved by means of procedures, others by textual macros that are expanded
at compile time.

The SUE system language has a ridid organization of procedures. Each
procedure has a DATA block in which information is shared with its local
(contained) procedures. This information includes the names of its parameters
and returned values, and declarations of the local procedures and all common
variables, types, and macros. CONTEXT blocks are similar to DATA blocks,
but are restricted to constant information which is to be shared by the procedures
of cooperating processes. Then each procedure has a program block which
contains the executable code and purely local declarations.

Some of the features of SUE that are of significance in developing good
code are discussed below.

o	 SUE permits long identifiers with a pseudeo- blank
(underscore) to allow naming variables in a meaning-
ful manner.

o	 SUE has a program constant feature which permits
the ability to define an identifier as equal to a constant.

o	 SUE has a macro expansion feature that instructs the
compiler to expand code keyed to the macro name.

o	 SUE provided for automatic indentation of the SUE
statements that produced highly readable code.

The SUE language was extended to accept and recognize narrative state-
ments and expressions. This extension allowed the use of SUE for design
notation as well as the actual system code. The MOSS design was expressed
in this pseudo-code at all levels. The narrative information was replaced by
code with the si • - cessive top-down refinements of the design.

n
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3. 2	 SUE Evaluation

A total evaluation of the use of SUE on the MOSS project is impossible
since the system was not implemented and fully tested. One of the major
reasons for the use of an HOL, was increased productivity. This objective
cannot be evaluated at this point in the implementation except on a subjective
level. The general feeling is the SUE did contribute to the production of
MOSS code.

The implementation of SUE (the compiler) was a disappointment. A
considerable amount of effort was required to correct bugs in the compiler.
Also, the compiler syntax checking and recovery left a lot to be desired. An
excessive number of computer runs were required to correct syntax diagnos-
tics. Often, a computer run was required to process beyond each "severe"
error detected by the compiler. Considering the state of development of the
compiler, SUE was a poor choice for the MOSS project. The HOL compiler
selected should have been one which was suited for production coding and had
a proven record of previous use.

SUE was a difficult language to learn. There was continuing resistance
and confusion about capabilities provided and their use. Aside from the nature
of the language itself, many of these problems can be attributed to the lack of
instructional and other supporting manuals. Also the diagnostic messages
produced by the compiler failed to provide the necessary feedback to learn the
language through "hands on" experience;.

A negative aspect of the SUE language itself was the lack of data
initialization features. The only way a data structure could be assigned initial
values was to provide a module for that purpose. The lack of this capability

-°	 caused an unnecessary increase in the amount of code which had to be generated
°	 for Ivf` SS.

Even though considerable difficulties were encountered with the SUE
language, it is recommended that HOL's be employed in future operating sys-
tem implementations. The problems encountered with SUE were not due to
its applicability to operating systems but rather with the compiler and the lack
of supporting documentation. The criteria for HOL selection must go beyond
the language capabilities suited to operating systems. The language must be
easy to learn and accompanied by sufficient documentation. The compiler must
have a proven record of previous -ase.
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	4.	 VIRTUAL MEMORY IN REAL TIME OPERATING SYSTEMS

Virtual memory has seldom been used in real time operating systems
since response requirements normally conflict with the time delays incurred
during paging I/O operations. If virtual memory was used, real time response
was often achieved by locking the entire real time program in main memory,
thus, wasting an important resource.

MOSS attempted to support virtual memory with policies which would
allow real time application programs to utilize this important resource with-
out sacrificing performance. To accomplish this goal, the following design
decisions were made:

o	 Each job would be allocated a user-specified range of main
memory into which the tasks of his job would be paged.

o	 A two-level address translation mechanism would be used
to reduce paging rates while simultaneously reducing the
memory fragmentation problem.

o	 Only user-specified portions of tasks would be locked in
main memory.

These decisions result in better utilization of the main memory resource since
the user need only lock the time-critical sections of his program, permitting
the remainder of the program to be raged in an efficient manner. In addition,
allocating a user-specified range of main memory to the job contributes to run
repeatability; an important real time performance consideration.

	

4.1	 Virtual Memory Impact on User Applications

The MOSS virtual memory management policies require the user to be
familiar with the basic concepts of the virtual memory policies and to cooperate
with other users in the efficient use of the memory resources.

The user must specify both a minimum and an optimum amount of main
memory to be allocated to his job. however, these are difficult parameters
for the user to derive. Insufficent main memory will result in thrashing while
excessive main memory will result in poor utilization of the resource and re-
duce unnecessarily the amount of main memory available to other users.

The user must also specify which modules of his program are to be
lociced in main memory. This policy requires that the user design the struc-
ture of his program in a manner which makes efficient use of the memory re-
source. That is, user programs should be structured such that the portions
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which must be locked in main memory are isolated in "small" modules. '1'liis,
again, is often a difficult requirement for the user to fulfill.

4.2	 Virtual Memory Impact on MOSS

Allowing the user to control key parameters in the management of the
memory resources results in a policy of trust between MOSS and the user.
For example, although MOSS monitors user programs for thrashing caused
by insufficient main memory, it does not detect requests for main memory
which are excessive. Therefore, users may abuse the virtual memory services
provided by MOSS. The services of MOSS permit the efficient use of virtual
memory in a multitasking real time environment only if the users are knowl-
edgeable, conscientious, and cooperate among themselves.

Memory management policies which rely on users to provide critical
parameters should provide the user with data which will aid him in deriving
these parameters. For example, paging rate profiles for a ta p k would assist
the user in determining whether more or less main memory should be allocated.

The hierarchical layering of the MOSS influenced the implementation of
virtual memory. The rules of layering prohibit modules in layers below the
memory management layer from utilizing the memory management functions.
This implies that page fault interrupts cannot be incurred by such modules.
Therefore, to prevent these page faults, all modules below the hierarchical.
layer of • nmory management must be permanently locked in main memory.
Hence, some modules are locked in main memory only because of the hierar-
chical layering which could otherwise be paged. The higher the memory
management functions are in the system hierarchy, the more main memory is
required to hold the locked portion of the system which is lower in the hierarchy.
Fortunately, in MOSS, the memory management functions are at a low hierar-
chical layer. Therefore, only a small portion of MOSS was required to be
locked to satisfy the layering requirements.

Virtual memory influenced the decision to code MOSS in a High Order
Language. Since the programmer has little control over what code a HOL
compiler will produce, he has less control over the size of the program than
would an assembly language programmer. However, virtual memory minimizes
this argument against the use of High Order Languages since .ystem size is no
longer as critical. The design of MOSS showed both positive and negative
aspects of virtual memory in real time systems. Virtual memory was a posi-
tive factor in the design of MOSS, contributing to the use of an HOL for the
implementation and making memory limitations largely transparent to the sys-
tem. On the other hand, user applications were required to be deeply involved
with the virtual memory concepts and policies. The user war required to de-
rive difficult performance parameters and structure his programs in accordance
with them.
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5.	 CONCURRENT HARDWARE/SOFT1VARE, DEVhl,OPN4ENT

One of the brighter spots of the MOSS project was that the value of
concurrent hardware and software design was neatly demonstrated. Since
tLi cost of software has passed the cost of hardware invirtually all applica-
tions, the need for this approach is a must.

In particular, the concurrent hardware/software development was
visible in the communications concerning virtual niernory, the interrupt struc-
ture, and the process switching mechanism. The interaction between the
hardware and software designers was particularly productive in these areas.
Software and hardware must be mated in a manner that extracts the best from
both disciplines. Hardware that is not controllable or usable by software,
represents an undersirable posture. On the other hand, software must be
designed to fully utilize all hardware capabilities.

5. 1	 Concurrent Hardware/Software Development Evaluation

Although the overall interaction betw':en the hardware and software
development was beneficial, there was room for improvement in several
areas. The first problem was that the interaction was never well-defined.
Procedures should have been established for resolving conflicting hardware
and software designs. It is recommended that the software and hardware
disciplines participate in formal reviews. The software personnel should
present their understanding of how Lhc hardware operates and how the soft-
ware will utilize it. This provides the means to identify any misun,lerstanding
of the specification. If there is a problem, both sides are then in it better
posture to discuss alLernatives as thr.y have an understanding of hour the other
discipline functions.

Another problem was that many of the potential conflicts between the
software and hardware were not discovered until the lowest level details of
the software design had been worked out. By this time, it was often too late
to affect the hardware design. It is recommended that the soft.are develop-
ment precede the hardware development by a sufficient time frame to maintain
the flexibility for hardware design decisions. This does not eliminate the need
for close coordination of the software and hardware design. It allows the two
efforts to be better paced for concurrent progress.
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